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Abstract. In this paper a mathematical formulation is presented which is used to calculate the flow field of a 
two-dimensional Stokes fluid that is represented by a lattice of unit cells with pores inside. The formulation is 
described in terms of an integral equation based on Lorentz's formulation, whereby the fundamental solution is 
used that represents the flow due to a periodic lattice of point forces. The derived integral equation is applied 
to model the viscous sintering phenomenon, viz. the process that occurs (for example) during the densification 
of a porous glass heated to such a high temperature that it becomes a viscous fluid. The numerical simulation 
is carried out by solving the governing Stokes flow equations for a fixed domain through a Boundary Element 
Method (BEM). The resulting velocity field then determines an approximate geometryat a next time point which is 
obtained by an implicit integration method. From this formulation quite a few theoretical insights can be obtained 
of the viscous sintering process with respect to both pore size and pore distribution of the porous glass. In particular, 
this model is able to examine the consequences of microstructure on the evolution of pore-size distribution, as will 
be demonstrated for several example problems. 

1. Introduction 

A method to produce glass fibres for the telecommunications industry is heating a porous pure 
glass to a sufficiently high temperature so that the glass becomes a highly viscous fluid: the 
flow causes densification of the glass. The driving force for this phenomenon is the excess of 
free surface energy of the porous glass compared to a same quantity of a fully dense glass. 
This process is usually referred to as viscous sintering. The glass flow appears to be highly 
viscous, incompressible and Newtonian: the Stokes creeping flow equations hold (cf. Kuiken 
[ 1 ] and Van de Vorst [2]). In general, the starting porous pure glass is produced by the so-called 
sol-gel technique (cf. Brinker and Scherer [3]); therefore the porous glass will also be referred 
to as the gel. 

Ideally, this way one wants to produce a dense and homogeneous glass, free from voids and 
impurities. Therefore, a good theoretical understanding is needed of the densification kinetics 
of the porous glass, i.e. the viscous sintering phenomenon. In particular, one is interested in the 
shrinkage rate of the glass as a function of the viscosity and particle size, which reflects how 
time, temperature and microstructure influence the development of the densification process. 
Another question is what kind of structural configuration leads to a higher densification rate. 

A simple approach to describing the sintering phenomenon is to consider the behaviour 
of simple systems only, i.e. so-called unit problems like the coalescence of two cylinders or 
two spheres. Such unit problems can be used to understand the behaviour of macroscopic 
systems. This approach goes back to 1945, when Frenkel [4] described the early stage of 
the coalescence of two equal spherical particles. He introduced the empirical rule, which is 
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used in most mathematical models of viscous sintering to date, that the work done by surface 
tension in decreasing the total surface area is equal to the total energy produced by dissipation 
of the flow. 

In the last few years a lot of work has been done in simulating the sintering of two- 
dimensional and axisymmetric unit problems. By now the evolution of some particular geome- 
tries can be solved even analytically, in particular using conformal mapping techniques, el. 
Hopper [5]-[7]. 

The first numerical simulation of a unit problem of viscous sintering was carried out by Ross 
et al. [8]. They considered the sintering of an infinite line of equal cylinders and performed 
their simulation by employing a Finite Element Method (FEM). Jagota and Dawson [9]-[11] 
applied the FEM to simulate two axisymmetric problems, i.e. the coalescence of two equal 
spheres and of an infinite line of equal spheres. In Jagota and Dawson [10], the calculated 
behaviour of the two coalescing spheres is used to simulate the densification of a powder 
compact. In that paper, the particle packing is modelled as a framework of links between 
any pair of touching spheres and the growth of those links is described by considering the 
behaviour of each pair of coalescing spheres separately. 

Kuiken [1] considered two-dimensional domains with a rather moderately varying curva- 
ture. He used an integral formulation based on the stream function and vorticity function and 
solved the resulting equations by employing a Boundary Element Method (BEM). In earlier 
work, cf. Van de Vorst et al. [12]-[15], we reported about the solution of the problem for 
arbitrarily shaped two-dimensional fluid regions with holes inside. In those papers, the Stokes 
problem is described by an integral formulation based on boundary distributions of single- 
and double-layer hydrodynamic potentials, which goes back to Lorentz [ 16]. 

A more sophisticated approach to describe the sintering phenomenon is the determination 
of a representative unit cell within the gel and to consider its densification. This unit cell has 
to be chosen so that it reflects the sintering of the porous glass as a whole realistically. Such 
a unit cell may consist of a number of particles, depending on the structure of the compact; 
this cell is also referred to as a meso-cell (De With [17]). Examples of this approach are the 
densification models developed by Mackenzie and Shuttleworth [ 18] and Scherer [ 19]. 

The model of Mackenzie and Shuttleworth [ 18] (MS-model) is generally accepted for late- 
stage viscous sintering. In this model, the densification results from the shrinkage of uniform 
spherical pores distributed throughout the gel. Hence the MS-model is also referred to as the 
closed-pores model. The representative unit cell is an individual spherical pore for which the 
flow field can be calculated analytically. The MS-model leads to an equation for the sintering 
time necessary to reach a particular density of the gel. 

Scherer [ 19] developed the so-called open-pores model, that assumes the gel to be a regular 
three-dimensional array of interconnected liquid cylinders, and considered its shrinkage. This 
model was used by Scherer to analyze the early and intermediate stage of the sintering of 
gels. For the unit cell that represents this structure, Scherer took a cubic array consisting of 
intersecting cylinders on all the edges, from which the total surface was calculated. After 
applying Frenkel's energy balance, he obtained an analytical relationship between the relative 
density and the time. However, the model breaks down when a pore is trapped in each cell, 
in the late sintering stage. Scherer's main result is a graph showing the density of the gel as a 
function of time which is very close to the predicted densification rate of the MS-model. 

In this paper, we present a mathematical formulation that can be used to simulate the 
densification of a two-dimensional arbitrarily shaped unit cell numerically. Therefore, it is 
assumed that the structure of the gel can be described by a periodic continuation of this 
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Fig. 1. The basic vectors of the unit cell of a periodic two-dimensional Stokes fluid lattice. 

particular unit cell as time evolves. The flow of the pores in the unit cell will be described 
in terms of an integral equation based on Lorentz's formulation. However, as fundamental 
solution in this equation the solution of the Stokes problem for a two-dimensional lattice of 
point forces is used, derived by Hasimoto [20] for the three-dimensional case. Note that the 
three-dimensional formulation is already applied to investigate the behaviour of suspensions, 
cf. Brady et al. [21] and Pozrikidis [22]. In section 2, we outline the derivation of this 
fundamental solution in terms of a rapidly converging series. The derivation of the governing 
integral formulation is briefly discussed in section 3. The numerical solution of this formulation 
is based on the two-dimensional numerical code developed by us earlier, cf. Van de Vorst et 
al. [12]-[15]. Hence, the BEM is applied to solve the governing integral equations for a fixed 
domain. After solving the flow problem, time stepping is carded out by an implicit time 
integrator: a variable-step, variable-order Backward-Differences-Formulae (BDF) scheme. 
Finally, we will demonstrate the usefulness of this approach in obtaining more details about 
the viscous sintering phenomenon by considering some example problems. 

2. Fundamental solution for a lattice of point forces 

In this section we outline the derivation of the fundamental solution for a lattice of point forces 
in a two-dimensional plane in terms of a rapidly converging series, by roughly following the 
approach of Hasimoto [20]. 

Let a I and a 2 be the time dependent basic vectors of the unit cell of the lattice (see Fig. 1). 
Hence the position of the ,~th lattice is given by 

X x = Ala t + A2a 2 (Ai = O, --I-1, + 2 , . . . ) .  (2.1) 



100 G.A.L. Van de Vorst 

In analogy with the derivation of the fundamental solution for a point force in an infinite fluid 
(cf. Lorentz [16]), we seek the vector field u m and the scalar function qrn that satisfies the 
following Stokes problem and continuity equation, 

Aura - grad qm = E ~(x - x)~)e TM 

;~ (2.2) 
d ivu m = O. 

Here m = 1 or 2, e m with e m = ~im, is the mth unit vector of an arbitrarily chosen Cartesian 
coordinate system, and 6(x) is the Dirac delta function. Moreover, the summation symbol 
used in Eq. (2.2) is an abbreviation for the double sum with respect to both ~1 and ~2 over 
all negative and positive integers. Physically, the above equations may be interpreted as the 
velocity at x induced by a two-dimensional lattice of unit point forces in the era-direction 
concentrated at the points X a. 

Following Hasimoto [20], we may expand u rn and (grad qm) by means of a Fourier series 
due to the periodicity of the flow field, thus 

u r n =  ~ f i ~ e x p ( - i x . K  ~) and - g r a d q r a  = ~- '~ l~nexp(- ix .K~' ) ,  (2.3) 
# # 

where, denotes the inner product and K~' is a vector in the reciprocal lattice space and is equal 
to 

K ~ = /zlb 1 + #2b 2 (#i = 0, 4-1, 4-2, . . .  ). (2.4) 

The vectors b 1 and b 2 are the basic vectors of the unit cell of the reciprocal lattice which are 

defined as 

b' 
= T k  = T 

and r is the total surface area of one cell, i.e. r = ala ] _ ala2 . 2  l It can easily be seen that 
the following relation is satisfied between the basic vectors of the original and the reciprocal 
lattice, 

a i .  b j = 27r~ij .  (2 .6)  

After substitution of both the Fourier series (2.3) and the equality 

5(x - X x) = 1_ ~ e x p ( - i  K ~'. x), (2.7) 
T 

in Ext. (2.2), we obtain the following relations for the coefficients ut, ^ ra and ~1~ n, 

era 
y - k  2fi + Cl~ = 7. , (2 .8)  

K ~ • ua^ra = O, (2 .9)  

where k = IKal. When we take # = 0, i.e. #1 = #2 = 0 so that K a = 0, Eq. (2.8) reduces 
to 

e ra 
~t~ n -- ~ .  (2.10) 

7" 
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Physically, the above equation states that the force acting on the fluid is balanced by the mean 
pressure gradient. Next, we assume # ~ 0. Taking the inner product of (2.8) with respect to 
Ks` and substituting Eqs. (2.9) and (2.10), we obtain 

1 
^'~ = - K s ` . e  m = K s ' . c l ~ .  ( 2 . 1 1 )  Ks` • qs` 7- 

Moreover, we note that from the identity curl( grad qm ) = 0, follows the equality 

^m KS` qs` x = 0. (2.12) 

Note that the operator x in the two-dimensional space reduces to 

• Xl Y l [  
x × y = x2 Y2 = x ly2 - x2yl .  

From the Eqs. (2.11) and (2.12) we obtain 

^'~ - K~m K s'. ( 2 . 1 3 )  
qs` - 7-k- 2 

After substitution of this relation into Eq. (2.10) we find for the coefficients fi~, 

^m 1 [KS`InKS` _ 1 ,.,] 
us` = r l  k 4 ~-~e . (2.14) 

From Eqs. (2.13) and (2.14), we can derive the following Fourier series for the fundamental 
solution in the reciprocal lattice space, 

- + V m S l ( X ) ,  
7- (2.15) 

u?(x) = U~o; + (~m A - Vj  Vm)S~(x), 

where ~7j denotes the derivative with respect to xj and the Fourier series Sn are given by 

' 1 
S,(x)  = _1~-~ ~-~ e x p ( - i x .  Ks`). (2.16) 

7- S  ̀

Here the prime ' means that the term # = 0 is excluded from the summation. 
The next step will be an improvement of the convergence of the series (2.16) by applying 

the so-called Ewald  summation technique. This method consists of splitting up the sum in 
two separate parts: one part is summed in the lattice space and the other part in the reciprocal 
space (cf. Nijboer and De Wette [23]). Here, we require the following identity of the Gamma 
funct ion F(n),  viz. 

1 a n fo °° _ _ 5 a n f o l t n _ , e _ a k 2 t d t  r ( n ,  ak 2) k 2n - F-~) tn le a k t d t -  1-'%) + F(n)k2" , (2.17) 

(the first identity can be found, for example, in Abramowitz and Stegun [24, Eq. 6.1.1]). Here 
a is an arbitrary parameter that will be fixed below; F(n, x) is the incomplete Gamma funct ion 
which is defined by 

fx °° 
F(n ,x)  = e - t t  n - l  dr. 
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Substitution of the identity (2.17) in Eq. (2.16) yields 

1 ' F(n, ak 2) exp(- i  x.  K ~) 
S. (x )  = rr n)  k2- 

/0 a n 1 t n -  1 E  exp(-  ak2t - i x .  K u) dt. 
+ rr(n-----) (2.18) 

The first sum on the right-hand side of the above equation converges rapidly owing to the 
exponential decay of the Gamma function; the convergence speed of the second sum behaves 
similar as the original sum (2.16). We may improve the convergence of this latter series by 
considering its summation in the original lattice space. In order to accomplish this, we apply 
the two-dimensional version of the Poisson summation formula, i.e. 

f (X x - x) = 1 ~ e x p ( - i x .  KU)F(KU), 
T 

where F(k) is the two-dimensional Fourier transform of f(x). Note that this summation 
formula can easily be deduced from the two-dimensional analogue of Parseval's theorem. In 
particular the following holds 

exp(- lx - X lb -- 
r k 2 

- 

# 

since the two-dimensional Fourier transform of the Gaussian function exp(-alxl 2) is equal 
to 7r exp ( - I k lS /4a ) /a  (see for instance Champeney [25, p.48]). Using the latter equality in 
the second sum of Eq. (2.18), we obtain 

/o ' 1 tn-lY'~ exp( - a k s t  _ i x .  K")dt  
# 

fo l t n _ l ~ e x p ( _ a k 2 t  / x .  Kt~) d t 1 
n # 

~ f o  ( Ix-X~12~ - " :  1 r I t  n - t e xp  d t -  - 
4ra 4at / n 

r Ix 2 
- -  4 n a n T r  EIx--X)~[Sn-2F( l - n ,  ~ ) 

1 

n 

We thus have split the Fourier series Sn (x) in two rapidly converging sums, viz. 

a '~ 1 Ix - X ~ l  2 
S.(x) = mr(n) + 4"~r(n) ~ Ix- x~12"-2r(1 - n, ~ ) 

1 ~ ,  r(n, aF) e x p ( - i x .  Kz), (2.19) 
+ rF(n) u k2n 

whereby we observe that the parameter a can still be chosen freely. It can be shown that Eq. 
(2.19) is equivalent to the solution obtained by Hasimoto [20]. 
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For deriving a workable expression for the fundamental solution (2.15), we have to evaluate 
Sn(x) and it's first and/or second-order derivative with respect to x for n equal to 1 and 2. 
Note that the involved incomplete Gamma functions can be evaluated by 

F ( - 1 , x )  = l e _  x _ El(Z), F(0,x)  = El(X), 
X 

r (1 ,  z )  = e - x ,  r (2 ,  z )  = (1 + z)e -x, 

respectively. Here El (x) denotes the Exponential Integral, which is defined by 

/1 El(x)  = e-Xtt -1 dt. 

After substitution of Eq. (2.19) in the fundamental solution (2.15), and working out all the 
derivatives, we arrive at the fundamental solution for the Stokes flow due to a lattice of unit 
point forces, 

qm(x ) = xm 1 ~ r~ r2 l ~ '  K~m 2 T 7exp(- )-7 7exp(-ak)sin(x.K") 

(2.20) 

lX7-,' 1 + 2 + r g )(1 +  k )exp(-ak )cos(x. K"), 

where r~ = xj - X~ and r = Ix - X;~I. From the asymptotic behaviour of El(x) for x 
approaching zero, i.e. 

El(x) = - 7  - log x + O(x) (x ~ 0), 

where 3' = 0.57721 56649. . .  is Euler's constant, we observe that the fundamental solution 
u m has a logarithmic singularity at the lattice points. Hence this solution behaves as the 
fundamental solution of the Stokes flow induced by a single unit point force in an infinite 
two-dimensional fluid, i.e. the stokeslet. Moreover, if we take the constant u~  equal to 

[log 4a - 2 - 7], (2.21) m 

'ttO-/ ----- 871" 

it can be shown that close to a pole the fundamental solution (2.20) reduces to a stokeslet. 
From the definition of the stress tensor T/j,n for a Newtonian fluid (cf. Eq. (3.3)), we can 

obtain an expression for the stress in the Stokes flow induced by the lattice of unit point forces, 
i.e. 

~j ,~ (x )  = ~ j ( q m , u m )  = -- ~q  + X7~ j + ~Tju7 ~. 

Here a repeated index in an expression denotes a summation over all possible values of that 
index (Einstein summation convention). Substitution of the fundamental solution (2.20) and 
carrying out the derivatives yields 

2ri r j r m  (1 + exp ( -  ~ )  
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1 ~ ' 1  [ ( a k 2 )  (k2(6imK ~ + 6jmK~) 2K i K~ Kin) + 7  ~ 1+  - ~' ~ 

+ 5ijk2K~ m exp(-ak 2) sin(x. K~'). (2.22) 

Finally, we have to fix the parameter a which controls the convergence speed of the two 
lattice sums in the original and the reciprocal space. Ideally, this parameter has to be taken 
such that both series are converging at equal rates. This can be accomplished by requiring 
the same exponential decay in both lattice sums, which yields the following value for the 
convergence parameter a, viz. 

Irl 
a = 47r (2.23) 

Note that this value is the two-dimensional analogue of the convergence parameter which is 
used in the case of a lattice sum in three-dimensional space (cf. Beenaker [26]). 

In the derivation of the integral formulation, as we will outline in the section below, we also 
require the fundamental solution due to a lattice of point sources. This fundamental solution, 
say fi and ~, satisfies the following equations 

A fi - grad~ = O; divfi = - ~ 6 ( x -  Xa). (2.24) 

The solution of the above equations can be obtained by assuming that 

6 = grad ~. (2.25) 

Substitution of this relation in both the equations of (2.24) yields 

grad ~ = grad A qa; A~ = - E 6(x - Xa). (2.26) 

Using the equality 

ASL (x) = - Z ~(x - x ~) + 1, 
T A 

we find 

~(x )  = Ix12 
4T + S1 (x)" (2.27) 

~(x) = - ~ ~(x - x ~) = o, 
A 

x5 
%(x)  = - 2 - 7  + v j & ( x )  

7rr2\ 1 x-" K~ (_ rk2~ 
- -  2rXJ 2~r~-~l r5 exp ( - - -~-- ) -72~. ,  --~--exp \ -~--/sin(x.K~).  

(2.28) 

(2.29) 

Next, from the Eqs. (2.26), (2.27), (2.19) and (2.23) we derive the following series for the 
fundamental solution 
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Note that ~ = 0 follows from the fact that x ~ X x, since a lattice of point sources is required 
which are situated inside the interior of each hole in a cell (cf. Van de Vorst [14]). 

For the fundamental stress tensor 7", using the above equation, we find 

r 7r 2 r i r j ( _ ~  + 1 ~r2 / ~ j (x)  : ' i j  l ~ @ i j _  x ;~ 1 ~ ) )~_~exp(___~_  

2 ,KrKf ; E  ( -  c° (x • (2.30) 

3. Integral formulation for the unit cell 

Here, we will deduce an integral formulation for the unit cell of a two-dimensional lattice 
by applying the fundamental solutions which were derived in the previous section. However, 
before we outline this derivation, we will briefly summarize the governing equations which 
describe the viscous sintering phenomenon. 

Here we assume that the sintering gel can be represented by a periodic continuation, in two 
directions, of a unit cell at any stage during the densification process. Hence the shrinkage 
of the unit cell corresponds to the shrinkage rate of the whole gel in the two-dimensional 
plane. The material transport by viscous sintering is modelled as a viscous incompressible 
Newtonian fluid driven solely by surface tension, cf. Kuiken [1]. Therefore, the Stokes creeping 
flow equations are valid, which can be characterized by the dynamic viscosity 7, the surface 
tension 3' and the magnitude of the body say through its cross-section, i.e. length l .  We define 
a characteristic velocity vc, a characteristic pressure Pc and a characteristic time tc based on 
the parameters 7, 77 and ~ by 

7 7 ~ 
Vc = -~ Pc = -~, tc -- 

rl 7 

Using these characteristic parameters and taking ~ as the characteristic length, we obtain for 
the Stokes equation the following dimensionless form 

Av - grad p = 0. (3.1) 

Here v denotes the dimensionless velocity and p is the dimensionless pressure of the flow. 
The conservation of mass can be expressed by the continuity equation 

divv = 0. 

The dimensionless stress tensor T for a Newtonian fluid is defined by 

% = + + ox,]" 

(3.2) 

(3.3) 

On the boundary, the dimensionless tension in the normal direction, say b, for a free fluid 
surface can be found as (Batchelor [27, p.150]) 

bi := ~ j  n j  = - ~ ni,  (3.4) 

where ~ is the curvatures of the boundary and n is the outward unit normal vector. 
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The motion of the boundary is obtained by applying the Lagrangian representation for the 
boundary velocity v, 

dx 
d~ = v(x), (x ~ r) ,  (3.5) 

where t is the dimensionless time. The above kinematic constraint expresses the displacement 
of the material boundary particles: the trajectories of those particles are followed. Hence a 
quasi-static approach is used to solve the viscous sintering problem. 

For the derivation of an integral formulation for the boundary velocity of a particular unit 
cell, we require the so-called Green's formula corresponding to the Stokes problem, i.e. 

OP ) u i Oq ) v i 

(3.6) 

= J r  - r,j(-q,u)va A dr, 

where 12 denotes a closed fluid domain that is surrounded by a boundary denoted by 1". Here 
F represents the union of both the outer boundary of the unit cell, say F0, and the boundaries 
of the pores in the inside of the cell which are denoted by Pk (k=l .... M). The above integral 
identity can easily be derived by the integration over f2 of the derivative of the stress tensor 
together with the application of the divergence theorem of Gauss. 

Moreover, we note that if the vector x in the fundamental solution (2.20) is replaced by 
x - y, the obtained functions ura(x - y) and qm(x - y) are still the solutions of the Stokes 
problem (2.2). It can also be verified that these functions are the solutions to the adjointsystem, 
i.e. 

A~um(x, Y) + graduqm(x, y) = ~ 5(x - y - XX)e m, 
A 

divyu m = O. 
(3.7) 

By ( )~ we mean that the differentiation is carried out with respect to y. 
We replace u and q in Green's formula (3.6) with the fundamental singular solutions 

um(x - y), q'n(x - y) and consider these as function of y, thus constituting the solution of the 
adjoint system (3.7). Furthermore, the domain fl is taken equal to a unit cell and we require 
that v and p satisfy the Stokes problem (3.1) and (3.2). Then we obtain the following Fredholm 
integral equation of the second kind, 

v,~(x) = fr~(-q~,um)uvin~dr u - frTq(p,v)u,~in~dPu, (3.8) 

for any x E ft. Here the coefficient u,m = u~(x - y), i.e. Eq. (2.20). The vector T/j(p, v)nj 
is given by the boundary condition (3.4), i.e. T(p, v)n = b. Moreover, it can be seen that for 
the other kernel, say qrai, holds 

q ,n i (x-y)  = 7ij(--qm, um)ynj = -Tij(qm, um)xnj = - T i j m ( x - y ) n j .  

Thus, using Eq. (2.22) and the optimal choice for the parameter a, viz. Eq. (2.23), we obtain 
for qrai (x) the following expression, 

~' a ~ I~'1 ~] ~..2] 1 -riXnm 5,nir~nj rj nj (1 + exp ( -  
2rmri 

qr ,(X) = -- + ,.2 " 2 J J  S ; [ J  
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+7 V 
]rlk 2 zmni  

+ k2K~ni exp( 47r )sin(x.  K~ ' )+  r (3.9) 

When we let x in Eq. (3.8) approach the boundary and use the assumption that this boundary 
is "smooth", we arrive at the following integral formulation 

½vj(x) + / r  q,j(x - y)vj(y) dFy = f r  uij(x - y)bj(y) dFv, (3.10) 

where the kernels uij and qij are given by the Eqs. (2.20) and (3.9), respectively. 
As in the two-dimensional formulation, when we used a stokeslet as a fundamental solution 

(cf. Van de Vorst [14, 2]), we have to deflate the above integral Eq. (3.10) with respect to the 
outward normal in order to make the integral equation uniquely defined and to accomplish 
that the pores in the inside of the unit cell are vanishing. 

Here we will only give the resulting integral formulation after the deflation is accomplished. 
Therefore, we require the integral equation in which the fundamental solution for a point force 
is used, for this deflation with respect to the outward normal. Substitution of Eqs. (2.29) and 
(2.30) in the Green's formulae (3.6) yields 

f r  q , ( x -  y)v,(y)dry = fr '~'(x y)b~(y) dFy, 

where 

qi(x - y) = ~ j (x  - y) nj, 

and in all the holes we choose an arbitrary point: let z m be a point in the inside of the area 
surrounded by Pm (m-1 ..... M). 

Then the deflated formulation of integral Eq. (3.10) can be expressed as, 

l m  'n k~0fr / r  ~v i ( x )  + k qij(xm - y)v~ dru + (1 - 60~)np(x TM) qj(z m - y)v 2 dF 
vrL 

= ~ f r  u iJ (xm- y)b~ dP u + (1-60m)nm(x m) f r  uj(zr" - y ) b r  dF. (3.11) 

H 

k = l  I, m 

Here the superscript m denotes that the particular variable is lying on the boundary of hole Pro. 
Note that the contribution of the cell boundary 1"0 for the right-hand side is not included, since 
it can be shown that this particular integral is equal to zero for every arbitrary periodic force 
b. This is a very nice property, because we cannot give an expression for the force on the outer 
boundary anyway. The above integral formulation is applied to simulate the densification of 
the unit cell in the Stokes flow with vanishing holes in the inside. 

4. Numerical solution 

The integral Eq. (3.11) is solved by applying a BEM. Hence the boundary is discretized 
into a set of N nodal points; the boundary curve F is replaced by a polygon through these 
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nodal points. Moreover, the integral formulation is enforced on the polygon for each of the 
collocation points. This results in a square full rank system of 2N linear algebraic equations 
with 2N unknowns which will be denoted by, 

7-/(x) v = ~(x)  b(x), (4.1) 

where x is a vector of length 2N that consists of all successive collocation points, viz. 

1 1 1 t Xl,X l, N N 1 T  
X ~ . . . .  ~X 1 ~X2J 

whereas the vectors v and b represent the corresponding boundary velocity and tension 
respectively. The vector b is known (cf. Eq. (3.4)): this vector is approximated by fitting 
a quadratic polynomial through three successive collocation points. The unknowns v are 
obtained after solving the linear square full rank system (4.1) by Gaussian elimination with 
partial pivoting (LU-decomposition). More details about the implementation of the BEM for 
general Stokes-flow problems can be found, for example, in Van de Vorst [2]. 

However, an extra detail in the present formulation is the accurate calculation of the 
lattice and reciprocal lattice summations which occur in the kernels of the integral Eq. (3.11). 
Because of the exponential decay of the separate terms in the lattice sums, we observed 
that summation over two or three lattice and reciprocal lattice layers was enough to obtain 
sufficient accuracy. 

A point of concern is that the basic vectors a i of the cell are varying, due to the densification 
of the lattice cell as time proceeds. Using the velocity of the corners of the outer cell boundary, 
these basic vectors can be calculated at each time step. Note that owing the periodicity of the 
cell corner velocities, it is sufficient to compute only one corner velocity. Hence the discretized 
system of unknowns which is obtained from the outer cell boundary F0, can be reduced to 
two unknowns: the velocity in the 1- and 2-direction. 

After calculating the required velocity field, we have to perform a time step. Using the 
kinematic constraint (3.5) for each collocation point together with Eq. (4.1), we obtain the 
following 2N non-linear system of ODEs, 

d._.~x = ,,1.~-1 (x) O(a~) b(a~). (4.2) 
dt 

In the available literature about free creeping Stokes flows this system of ODEs is dis- 
cretized by a simple forward Euler scheme or other explicit schemes. However, it appears 
that the above system of ODEs can be st/fffor certain type of shapes (e.g. shapes which have 
cusp-like regions); then the time step in the forward Euler scheme has to be taken very small 
to obtain a stable method. Therefore, we have implemented a variable-step, variable-order 
Backward-Differences-Formulae (BDF) method to solve these ODEs. More details about this 
implementation are available in Van de Vorst and Mattheij [15]. 

The collocation points of the boundary are (re)distributed after a certain number of time 
steps. In Van de Vorst and Mattheij [13], we proposed an algorithm for a fairly optimal 
node redistribution based on equidistributing the curvature of the boundary. The aim of that 
algorithm is twofold. Firstly, the number and position of the discretization points are optimized, 
which is important because the computational costs per time step are proportional to (2N) 3. 
Secondly, the algorithm treats regions with a large curvature "cusp" such that the curvature of 
this particular region is preserved after redistribution to avoid (numerical) oscillations in the 
computed velocity field. 
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5. Numerical results 

Results of numerical simulation for a number of two-dimensional sintering geometries are 
presented to demonstrate the correctness of the mathematical formulation developed and to 
show some typical evolution properties. 

5.1. VALIDATION OF MATHEMATICAL MODEL 

We will investigate the influence of the choice of the unit cell in a fluid with both uniformly 
sized and distributed pores, on the numerically obtained densification results of this geom- 
etry. In order to validate the mathematical formulation as outlined in the previous sections, 
the differences in densification rates have to be minimal with respect to the choice of the 
representative unit cell. 

Therefore we consider a fluid with cylindrical pores of radius 0.5 which are distributed 
uniformly in the two-dimensional plane. The distance between the centers of two subsequent 
pores is taken equal to 2. A part of this fluid domain is shown in Fig. 2. We consider 
the densification of this fluid domain for three different choices of unit cells as indicated 
in the same picture (a--c). Hence the unit cells consist of 1, 4 or 9 cylindrical pores. The 
shape deformation of the various unit cells is also plotted in Fig. 2 at subsequent time steps 
t = 0.0(0.1)1.0. 

The density, say p, of the fluid domain at a particular time is found from dividing of the 
surface occupied by fluid in the unit cell by the total area that surrounds the outer boundary 
of the cell. In Fig. 3 the numerically obtained densification rate is plotted for the three ceils as 
time evolves. From this plot, we observe that the differences between the three shrinkage rates 
are very small: this gives some validation of our proposed mathematical approach. Hence, 
we can restrict ourself to consider the densification of the most simple unit cell, i.e.a. Note 
that from the figure it can be observed that the densification proceeds at an almost linear 
rate here. We have also plotted the densification rates resulting from the analytical models of 
both Mackenzie and Shuttleworth [18] (closed-pores model or MS-model) and Scherer [19] 
(open-pores model). 

The model of Mackenzie and Shuttleworth [18] is generally used to describe the late-stage 
viscous sintering of the gel. The densification results from the shrinkage of spherical pores 
distributed uniformly throughout the fluid. Moreover, it is assumed that all the pores have 
an identical radius. The closed-pores model in full dimensional variables gives the following 
analytical relationship between the relative density of the sintering gel and the reduced time, 

[(1 "4- ao)3(1 + a 3) 
K 3 ( t - t o )  : ~ (3 )~ (½1ogL-  ~ ; a - ~ a - ~ ]  

2v% o- a) 
+ v/3arctan [3 + (2a0 -  l ~ a - 1 ) ] ) '  (5.1) 

where 

K3 = 7n3. a(~) = ; ao = a(f3o); ~3o = --" and ~ = p 
~1 Ps Ps ' 

with 0 </~o </~ < 1. Here p is the bulk density of the gel, P0 is the initial bulk density (at 
t = to), Ps is the density of the solid phase (skeletal density) and n is the number of closed 
pores per unit of volume of solid phase. 
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The choice of unit cell 
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The densification at t = 0.0(0.1) 1.0 
Fig. 2. Some choices of unit cells that can be made in a Stokes flow with uniformly sized and distributed cylindrical 
pores. In (a)-(c) is shown the densification shapes of the various unit cells at three subsequent time steps, 

In the two-dimensional plane, we can deduce an analogous closed pores model by assuming 
that the densification results from the shrinkage of uniform cylindrical pores distributed 
throughout the fluid. The following densification rate is then obtained 

K 2 ( t - t o )  - ~ [arcs in(1-  ) o ) - a r c s i n ( 1 - / 5 ) ] ,  (5.2) 

where K2 = 7v/-n/~. In the sequel, we will refer to (5.1) as the 3D closed pores model and to 
(5.2) as the 2D closed pores model. 

The so-called open-pores model of Scherer [19] is normally used to analyze the early 
and intermediate stage of the sintering process. As was stated in the introduction, in this 
description it is assumed that the gel can be modelled as a regular three-dimensional array of 
interconnected liquid cylinders. For the unit cell representing this structure, a cubic is taken 
which is characterized by the edge length and the cylinder radius. After approximating the 
flow field of this unit cell, the following densification equation can be deduced 

- bo + b~)(1 + b)21 
K 3 ( t - t o )  = 2~!(11og[(~ -~_-~)2--~i-Sr-~0--~j 

2vS(b0- b) 
+ v~arctan [3 + (2b0-  1 ) ( 2 b - 1 ) ] ) '  (5.3) 

where 

(2_(1 .+_cos½~) ~ [8V/2/5(Tr3 - 32/5)] ( zr t~ < 7r3/64 
b = ~, 1 - 2cos ½~ ) ; ~ = arctan / ~--3_--6-4~ j + 27r f3 > 7r3/64, 

and b0 is found by substituting qoo in the relation for b. The variable qoo is similarly defined by 
using/50 instead of/5 in the equation above. Eq. (5.3) applies for 0 </5 < 0.942 only, since it 
can be shown that at the density t3 = 0.942 the parallel cylinders of the unit cell touch. Next, 
each cell contains an isolated pore so that the closed pores model applies. 
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Fig. 3. A good matching is obtained when we compare the numerically obtained density (p) changes of the three 
unit ceils of figure 2 as time (t) proceeds. Both the analytic relations of the open- and closed-pores model predict 
an almost similar behaviour of the shrinkage rate. 

The dimensionless form of the analytical densification Eqs. (5.1)-(5.3) can easily be found 
by skipping the factor 'y/~ and taking Ps = 1, hence/3 = /9. Moreover, we note that in 
the above three models the pores are assumed to be of equal size and distributed uniformly 
throughout the sintering material. Although the Eqs. (5.1) and (5.3) are developed for a 
really three-dimensional sintering gel, the comparison with the numerical results gives some 
quantitative insight in the reliability and limitations of those approximations. When comparing 
these analytical predictions with the densification rate obtained numerically, as is shown in 
Fig. 3, we observe that during the initial stage the numerical shrinkage rate proceeds slightly 
more slowly than the analytical predictions; the opposite holds during the later stages of the 
densification. Moreover, we observe a reasonable agreement between the numerical results 
and the closed pores model in two dimensions, i.e. relation (5.2). The latter observation also 
provides some justification for the mathematical model proposed in this paper. 

A more complicated densification problem is the sintering of a regular packing of equally 
sized cylinders. A part of this packing is shown in Fig. 4. The initial radii of all cylinders is 
taken equal to 0.5 and the contact radius, say r, between two touching cylinders, the so-called 
neck region, is initially set equal to 0.095 for all the coalescing regions. Furthermore, we use 
Hopper's analytical solution for the coalescence of two equal cylinders to approximate the 
neck regions of the initial shape (cf. Hopper [5]). In Figs. 4a-4c we show the densification 
of these three unit cells. All curves are plotted at equal periods of 0.1. An explanation for 
the differences in shape deformation of these three cells can be found from the mathematical 
formulation itself, i.e. the evolution differences are not due to numerical errors. Since the 
basic lattice vectors are taken equal to the outer boundary of all the three cells, the periodicity 
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Fig. 4. The choice of unit cell that can be made in a Stokes flow with uniformly sized and distributed cylindrical 
particles. In (a)--(c) is shown the densification shape of the various unit cells at subsequent time steps. 

of the velocity field is imposed on these cell boundaries. Therefore, in the case of the 4 and 9 
pores cells these pores have the freedom to approach one another. However, this translation of 
pores should not have any effect on the various densification rates. Therefore, a comparison 
of the numerically obtained densification rates is shown in Fig. 5. Now we observe that 
the differences are larger between these three curves, compared with the numerical results 
obtained in the previous example. However, the general behaviour of the three curves is 
similar, so that we may still conclude that our mathematical formulation holds. 

In Fig. 5 we have also compared the densification rate of the above mentioned unit cells 
to the analytical open and closed-pores models. Now we observe that these relations predict 
quite a different densification evolution during the early stages as compared with the obtained 
numerical simulation results: the numerically obtained rate proceeds much slower than the 
analytical predictions. This is caused by a smoothing of the neck region during this stage, 
which results in only a small reduction of the pore size. Hence this example illustrates that 
the densification rate depends on the pore shape of the initial geometry. 

An interesting question is the behaviour of the neck growth between two touching cylin- 
ders of these packings compared to the exact contact radius development of two coalescing 
cylinders. In Fig. 6 we show the development in time of the contact radius for the unit cell 4a. 
The exact neck radius for the coalescence of two cylinders with initial radii equal to 0.5, as 
obtained from Hopper's analytical solution, is also plotted. From this picture we see that only 
during the initial stage the neck growth is similar to the contact radius development of two 
coalescing cylinders, i.e. during the smoothening of the neck region. Thereafter, the contact 
radius is increasing much slower in comparison with the analytic solution. Hence the latter 
prediction should only be used during the early stage of the sintering process. 

5.2. DENSIFICATION EFFECTS DUE TO IRREGULARITIES 

In practice, one does not deal with a uniform-size pore distribution or a regular packed 
array of cylinders as we considered in the above subsection. Usually, the sintering compact 
is an irregular particle packing that consists of a variety of particle sizes with (often) a non- 
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Fig. 5. A sufficient matching is obtained when we compare the densification rates of  the above three unit cells. 
During the early stage the numerical densifieation behaviour differs considerably with the prediction of  the analytic 
open and closed pores models. 
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Fig. 6. The contact radius r development of  the cylindrical packing compared with the exact analytical solution of  
the coalescence of  two equal cylinders shows only an agreement during the early stages. At later time stages, the 
neck radius of  the cylindrical packing develops much more slowly. 
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F i g .  7. The shape deformation of the unit cell of a periodic lattice of non-uniformly sized cylindrical pores at 
subsequent times shows that the pores vanish in order of size. 

spherical-(cylindrical) form. Moreover another effect due to these irregularities has to be taken 
into account: the rearrangement of particles and the opening and closure of pores induced by 
this rearranging of particles. 

Because of this, an important issue in sintering research is the quantification of the rest- 
porosity of the gel after sintering. The scientific interest for this densification process is to 
understand the magnitude of the driving force for this process and to deduce how the driving 
force and thus the densification rate are affected by the gel microstructure as is illustrated by 
the last example of the previous subsection. 

The effect of nonuniformly sized and distributed pores can be illustrated by the fluid lattice 
plotted in Fig. 7 at t = 0.0. Here we consider a unit cell of length 1 by 1 with 12 nonuniformly 
sized cylindrical pores from which the radii are varying between 0.05 and 0.25. The plots at 
various time steps of the deformed cell shape show that the pores vanish in the order of their 
sizes one after the other: all pores are shrinking, which results in the vanishing of the smallest 
pores first, followed by the larger pores. Moreover, we observe from these pictures that the 
aspect ratio of the unit cell is changing, which might be seen as an effect on the shrinkage of 
the entire viscous sintering body. 
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Fig. 8. The numerical densification rate of the periodic lattice of nonuniformly sized cylindrical pores of figure 7 
is compared with the two-dimensional closed pores model prediction. A good matching is obtained when in this 
model only the significantly largest pores of the unit cell are taken (2) compared to the case when all the pores are 
counted (12). 

This behaviour is the opposite of the numerical results obtained for afinite two-dimensional 
fluid region with nonuniform sized pores (cf. Van de Vorst [2, p.117]). There, it appears that 
the initially larger sized pores are shrinking significantly faster as compared to the smallest 
ones as time evolves. This difference can be explained from the fact that in the finite domain 
case, the fluid obtains an extra tension due to the curvature of the outer boundary. 

In Fig. 8 the numerically obtained densification rate of the above unit cell is plotted, which 
is compared with the two-dimensional closed-pores model prediction (5.2). A good matching 
is obtained in this model when the significantly largest pores of the unit cell are counted 
only (n = 2/0.409), i.e. the smaller pores are ignored. When all pores are taken into account 
(n = 12/0.409), the predicted densification rate decreases considerably. 

All pores in the cells we considered so far were shrinking during the entire densification 
process. However, it might also be possible that some pores first grow in size, before they 
shrink and vanish. This process will influence the densification rate negatively. In Fig. 9 this 
phenomenon is demonstrated. The unit cell represents a texture model of an aerogel that is 
formed in a base-catalysed way (after Craievich et al. [28]). Initially, the size of the rectangular 
unit cell is taken as 2.1 by 2.8, with density P0 = 0.439 and it contains 17 pores. 

Again it can be seen from the subsequent time plots in Fig. 9 that the smaller pores vanish 
first. Moreover, we observe that during the early time stages some pores become larger in size 
before they start shrinking. Especially, this occurs for pores that have large concave boundary 
parts. Such pores have much longer boundary lengths than what would strictly be required to 
surround the pore contents. Hence such pores may expand, whereas the total pore boundary 
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Fig. 9. The densification of a texture model of a base-catalysed aerogel demonstrates that some pores are growing 
initially before they start shrinking. This phenomenon influences the densfieation rate negatively. 

length still decreases as time evolves. Thus we conclude that one should avoid such kind of 
pore shape as much as possible. 

The density change of the unit cell of the aerogel texture model is plotted by a solid line in 
Fig. 10 for increasing time. In the same figure we have also plotted the results obtained from 
the analytical closed-pores model prediction. Again, we observe that this equation provides the 
most accurate prediction of  the numerical densification rate when only the three largest pores 
are counted in the densification relation (n=3/2.579). However, the predicted densification rate 
deviates more from the numerical solution which is caused by the pore growing phenomenon. 
It appears to be impossible to introduce the phenomenon of growing pores in a densification 
model; hence the only way to discover this effect for a certain given microstructure would be 
by numerical simulation of the representative unit cell. 

More details about numerical results of simulating representative unit cells numerically 
will be provided in an accompaning paper, cf. Van de Vorst [29]. 
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Fig. 10. The numerical densification rate of the aerogel texture of figure 9 is compared with the two-dimensional 
closed pores model prediction. Again, a good matching is obtained when in this model only the significantly largest 
pores of the unit cell are taken (3) compared with the case when all the pores are counted (17). 

Acknowledgements 

The author would like to express his appreciation to Dr. G.W. Scherer of DuPont de Nemours 
& Co. and Prof. C. Pozrikidis of the University of California at San Diego for giving useful 
comments on preliminary versions of this work. 

References 

1. H.K. Kuiken, Viscous sintering: the surface-tension-driven flow of a liquid form under the influence of 
curvature gradients at its surface. J. Fluid Mech. 214 (1990) 503-515. 

2. G.A.L. van de Vorst, Modelling and Numerical Simulation of Viscous Sintering. PhD thesis, Eindhoven 
University of Technology. (1994) 181 pp. 

3. C.J. Brinker and G.W. Scherer, Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing. London: 
Academic Press (1990). 

4. J. Frenkel, Viscous flow of crystalline bodies under the action of surface tension. J. Phys. USSR 9 (1945) 
385-391. 

5. R.W. Hopper, Plane Stokes flow driven by capillarity on a free surface. J. Fluid Mech. 213 (1990) 349-375. 
6. R.W. Hopper, Plane Stokes flow driven by capillarity on a free surface, 2: further developments. J. Fluid 

Mech. 230 (1991) 355-364. 
7. R.W. Hopper, Stokes flow of a cylinder and half-space driven by capillarity. J. Fluid Mech. 243 (1992) 

171-181. 
8. J.W. Ross, W.A. Miller and G.C. Weatherly, Dynamic computer simulation of viscous flow sintering kinetics. 

J. Appl. Phys. 52 (1981) 3884-3888. 
9. A. Jagota and P.R. Dawson, Micromechanical modeling of powder compacts-I, unit problems for sintering 

and traction-induced deformation. Acta. Metall. 36 (1988) 2551-2561. 
10. A. Jagota and P.R. Dawson, Micromechanical modeling of powder compacts-II, truss formulation of discrete 

packings. Acta. Metall. 36 (1988) 2563-2573. 



118 G.A.L. Van de Vorst 

I 1. A. Jagota and P.R. Dawson, Simulation of the viscous sintering of two particles. J. Am. Ceram. Soc. 73 
(1990) 173-177. 

12. G.A.L. van de Vorst, R.M.M. Mattheij and H.K. Kuiken, Boundary element solution for two-dimensional 
viscous sintering. J. Comput. Phys. 100 (1992) 50--63. 

13. G.A.L. van de Vorst and R.M.M. Mattheij, Numerical analysis of a 2-D viscous sintering problem with non 
smooth boundaries. Computing 49 (1992) 239--263. 

14. G.A.L. van de Vorst, Integral method for a two-dimensional Stokes flow with shrinking holes applied to 
viscous sintering. J. Fluid Mech. 257 (1993) 667--689. 

15. G.A.L. van de Vorst and R.M.M. Mattheij, A BEM-BDF scheme for curvature driven moving Stokes flows. 
J. Comput. Phys. (1995). (To appear). 

16. H.A. Lorentz, Eene algemeene stelling omtrent de beweging eener vloeistof met wrijving en eenige daaruit 
afgeleide gevolgen. Versl. Akad. Wetensch. Amsterdam 5 (1896) 168-175. 

17. G. de With, Meso-modeUing: a proposed attempt to obtain an industrially applicable sintering theory. In: 
Proc. Conf. on Modelling of Sintering Processes. (1990). Lecture at the 71 WE Heraeus Seminar. 

18. J.K. Mackenzie and R. Shuttleworth, A phenomenological theory of sintering. Proc. Phys. Soc. Lond. 62 
(1949) 833-852. 

19. G.W. Scherer, Sintering of low-density glasses: I, Theory. J. Am. Ceram. Soc. 60 (1977) 236-239. 
20. H. Hasimoto, On the periodic fundamental solutions of the Stokes equations and their application to viscous 

flow past a cubic array of spheres. J. FluidMech. 5 (1959) 317-328. 
21. J.E Brady, R.J. Phillips, J.C. I,ester and G. Bossis, Dynamic simulation of hydrodynamically interacting 

suspensions. J. FluidMech. 195 (1988) 257-280. 
22. C. Pozrikidis, On the transient motion of ordered suspensions of liquid drops. J. Fluid Mech. 246 (1993) 

301-320. 
23. B.R.A. Nijboer and EW. de Wette, On the calculation of lattice sums. Physica 23 (1957) 309-321. 
24. M. Abramowitz and I.A. Stegun. Handbook of Mathematical Functions. New York: Dover Publications. 

(1964) 1046 pp. 
25. D.C. Champeney• F•urier Transf•rms and their Physical Applicati•ns. L•nd•n: Academi• Press. ( • 973 ) 256 

PP. 
26. C.W.J. Beenaker, Ewald sum of the Rotne--Prager tensor. J. Chem. Phys. 85 (1986) 1581-1582. 
27. G.K. Batchelor. An Introduction to Fluid Dynamics. Cambridge: Cambridge University Press. (1967) 605 

PP. 
28. A. Craievich, M.A. Aegerter, D.I. dos Santos, T. Woignier and J. Zarzycki, A SAXS Study of Silica Aerogels. 

J. Non-Cryst. Solids 86 (1986) 394--406. 
29. G.A.L. van de Vorst, Numerical Simulation of Viscous Sintering by a Periodic Lattice of a Representative 

Unit Cell (1995). (In preparation). 


